[^0]Question 1
Partially correct
Mark 4.28 out of 4.50

Answer the questions below, (Insert the numerical value only, do not use <,>,+, *, or /)
The Relative error for your answer should be less than 0.01 , which means if the answer was 50 , then the error should not exceed $50 * 0.01= \pm 0.5$!
if the answer was 230 , then the error should not exceed $230 * 0.01= \pm 2.3$!
if the answer was $2.31467^{*} 10 \wedge-3$, then you should enter this value: 0.00231467 , not this $0.0023!!!!$

Find the state equation only in phase-variable form for the following transfer function:
$T(S)=[8 S+20] /\left[2 S^{4}+16 S^{3}+34 S^{2}+6 S+8\right]$
Follow this order:
$\$ \$\left[\begin{array}{l}d / d t(x 1) \\ d / d t(x 2) \\ d / d t(x 3) \\ d / d t(x 4)\end{array}\right]=\left[\begin{array}{llll}(1.1) & (1.2) & (1.3) & (1.4) \\ (2.1) & (2.2) & (2.3) & (2.4) \\ (3.1) & (3.2) & (3.3) & (3.4) \\ (4.1) & (4.2) & (4.3) & (4.4)\end{array}\right] *\left[\begin{array}{l}x 1 \\ x 2 \\ x 3 \\ x 4\end{array}\right]+\left[\begin{array}{c}(1) \\ (2) \\ (3) \\ (4)\end{array}\right] * r \$ \$$
according to the above arrangement of the matrix,
the value of (1.1) is: 0

One possible correct answer is: 0
the value of (1.2) is: 1

One possible correct answer is: 1
the value of (1.3) is: 0

One possible correct answer is: 0
the value of (1.4) is: 0

One possible correct answer is: 0
the value of (2.1) is: 0

One possible correct answer is: 0
the value of (2.2) is: 0

One possible correct answer is: 0
the value of (2.3) is: 1 1

One possible correct answer is: 1

$$
\text { the value of (2.4) is: } 0
$$

One possible correct answer is: 0

$$
\text { the value of (3.1) is: } 0
$$

\square

One possible correct answer is: 0 the value of (3.2) is: 0 \qquad

One possible correct answer is: 0

$$
\text { the value of (3.3) is: } 0
$$

One possible correct answer is: 0

$$
\text { the value of (3.4) is: } 1
$$

One possible correct answer is: 1
the value of (4.1) is: -4

One possible correct answer is: -4 the value of (4.2) is: -3
\checkmark
One possible correct answer is: -3

$$
\text { the value of (4.3) is: }-17
$$

One possible correct answer is: - 17
the value of (4.4) is: -8
\checkmark
One possible correct answer is: -8
the value of (1) is: 0

One possible correct answer is: 0
the value of (2) is: 0

One possible correct answer is: 0
the value of (3) is: 0

One possible correct answer is: 0
the value of (4) is: 0.5
x
One possible correct answer is: 1

Answer the questions below, (Insert the numerical value only, do not use <,>,+, *, or /)
The Relative error for your answer should be less than 0.01 , which means if the answer was 50 , then the error should not exceed $50 * 0.01= \pm 0.5$!
if the answer was 230 , then the error should not exceed $230^{*} 0.01= \pm 2.3$!
if the answer was $2.31467^{*} 10 \wedge-3$, then you should enter this value: 0.00231467 , not this 0.0023 !!!!

If $\mathrm{R}=4$ ohm, $\mathrm{L}=0.072 \mathrm{H}, \mathrm{C}=0.026 \mathrm{~F}$ and $\mathrm{V}_{\mathbf{i}}(\mathrm{t})=54$ Volts.
For this circuit, use mesh analysis in order to find the current $\mathbf{I}_{\mathbf{1}}(\mathbf{s})$, and it can be written in the following form (NOTE that the coefficient of $\mathbf{S}^{\mathbf{2}}$ is unity):
$I_{1}(s)=\frac{A s+B}{s\left(s^{2}+C s+D\right)}$
the value of \mathbf{A} is:
$-13.8 \times$

One possible correct answer is: -750

The value of \mathbf{B} is:
-133. x

One possible correct answer is: -7211.5384615385

The value of \mathbf{C} is:
$9.62\{\checkmark$

One possible correct answer is: 9.6153846153846

The value of \mathbf{D} is:
534.

One possible correct answer is: 534.18803418803

Question 3

Partially correc \dagger
Mark 1.00 out of 2.00

Answer the questions below, (Insert the numerical value only, do not use <,>,+, *, or /)
The Relative error for your answer should be less than 0.01 , which means if the answer was 50 , then the error should not exceed $50 * 0.01= \pm 0.5$!
if the answer was 230 , then the error should not exceed $230 * 0.01= \pm 2.3$!
if the answer was $2.31467^{*} 10 \wedge-3$, then you should enter this value: 0.00231467 , not this $0.0023!!!!$

The open loop transfer function of a unity feedback system (negative feedback) is $\mathbf{K}(S+7) /\left[S^{3}+\mathbf{a} S^{2}+5 S+1\right]$.
You are asked to fine the positive values of (\mathbf{K}) and (a) such that the system oscillates at frequency of $8 \mathrm{rad} / \mathrm{sec}$.
The value of \mathbf{K} is:
$11.2(x$

One possible correct answer is: 59

The value of \mathbf{a} is:
6.50\&

One possible correct answer is: 6.46875

Answer the questions below, (Insert the numerical value only, do not use <,>,+, *, or /)

The Relative error for your answer should be less than 0.01 , which means if the answer was 50 , then the error should not exceed $50 * 0.01= \pm 0.5$!
if the answer was 230 , then the error should not exceed $230^{*} 0.01= \pm 2.3$!
if the answer was $2.31467^{*} 10 \wedge-3$, then you should enter this value: 0.00231467 , not this $0.0023!!!!$

For this mechanical system, the parameters are as follow:
$K=5, J=13, N 1=9, N 2=3, N 3=6, N 4=8$, the value of D is unknown.
the transfer function $\frac{\theta_{1}(s)}{T_{1}(s)}$ can be written in terms of D in the following form:
$\frac{\theta_{1}(s)}{T_{1}(s)}=\frac{(c 1) s^{2}+(c 2) s+(c 3)}{(c 4) s^{2}+\left[(c 5)^{*} D\right] s+(c 6)}$
where $c 1, c 2, c 3, c 4, c 5$ and $c 6$ are constants. the value of $c 6$ is given in order to get a unique solution. So, the value of $c 6$ is 5 .
The value of cl is:
\times

One possible correct answer is: 0

The value of $c 2$ is:
x

One possible correct answer is: 0
The value of $c 3$ is:
\square
One possible correct answer is: 1

The value of c4 is:

x

One possible correct answer is: 65.8125
The value of c5 is:
x
One possible correct answer is: 9

Find the value of D such that there is 80% overshoot in the system.
the value of D is:

One possible correct answer is: 0.28575082698692

Question 5
Partially correct
Mark 3.33 out of 5.00

Answer the questions below, (Insert the numerical value only, do not use <,>,+, *, or /)
The Relative error for your answer should be less than 0.01 , which means if the answer was 50 , then the error should not exceed $50 * 0.01= \pm 0.5$!
if the answer was 230 , then the error should not exceed $230^{*} 0.01= \pm 2.3$!
if the answer was $2.31467^{*} 10 \wedge-3$, then you should enter this value: 0.00231467 , not this 0.0023 !!!!

Assume that a unity feedback system has the closed loop poles in the S-plane as shown in this figure:

the the closed loop system has a unity DC gain, and If the value of A is 36 , the value of B is 3 and the value of C is 30 . Then, the EXACT closed-loop Transfer function of the system is:
$T(S)=\frac{k 1}{s^{3}+(k 2) s^{2}+(k 3) s+(k 4)}$
the value of kl is:
$3915 \times$

One possible correct answer is: 39150
the value of $k 2$ is:

36

One possible correct answer is: 36
the value of $k 3$ is:

1485 ,

One possible correct answer is: 1485
the value of $k 4$ is:
$3915 \times$

One possible correct answer is: 39150

If the second order approximation is valid, answer the following question, if not, do not solve:
The Natural frequency of the system is: $\sqrt[36.12]{ } \mathrm{rad} / \mathrm{sec}$.

One possible correct answer is: 36.124783736377
the value of the damping ratio is: 0.08 :

One possible correct answer is: 0.08304547985374
The Settling time is: 1.33 : seconds

One possible correct answer is: 1.3333333333333
The Peak time is: 0.08 ; seconds

One possible correct answer is: 0.087266462599722

The percent overshoot is: $\sqrt{71.84} \%$
x

One possible correct answer is: 76.966541249323

Question 6
Partially correct
Mark 3.15 out of 4.50

Answer the questions below, (Insert the numerical value only, do not use <,>,+, *, or /)
The Relative error for your answer should be less than 0.01 , which means if the answer was 50 , then the error should not exceed $50 * 0.01= \pm 0.5$!
if the answer was 230 , then the error should not exceed $230^{*} 0.01= \pm 2.3$!
if the answer was $2.31467^{*} 10 \wedge-3$, then you should enter this value: 0.00231467 , not this 0.0023 !!!!

if $M 1=3, M 2=2, f v 1=2, K 1=4, K 2=2$.
Find the state equations for the translational mechanical system shown in Figure.
$\$ \$\left[\begin{array}{l}d / d t(x 1) \\ d / d t(v 1) \\ d / d t(x 2) \\ d / d t(v 2)\end{array}\right]=\left[\begin{array}{llll}(1.1) & (1.2) & (1.3) & (1.4) \\ (2.1) & (2.2) & (2.3) & (2.4) \\ (3.1) & (3.2) & (3.3) & (3.4) \\ (4.1) & (4.2) & (4.3) & (4.4)\end{array}\right] *\left[\begin{array}{l}x 1 \\ v 1 \\ x 2 \\ v 2\end{array}\right]+\left[\begin{array}{l}(1) \\ (2) \\ (3) \\ (4)\end{array}\right] * f(t) \$ \$$
according to the above arrangement of the matrix,
the value of (1.1) is: 0

One possible correct answer is: 0
the value of (1.2) is: 1

One possible correct answer is: 1
the value of (1.3) is: 0

One possible correct answer is: 0
the value of (1.4) is: 0

One possible correct answer is: 0
the value of (2.1) is: -2
\checkmark
One possible correct answer is: -2
the value of (2.2) is: -0.66
\checkmark
One possible correct answer is: -0.66666666666667
the value of (2.3) is: 0.666

One possible correct answer is: 0.66666666666667
the value of (2.4) is: 0.666

One possible correct answer is: 0.66666666666667
the value of (3.1) is: 0

One possible correct answer is: 0
the value of (3.2) is: 0

One possible correct answer is: 0
the value of (3.3) is: 0

One possible correct answer is: 0
the value of (3.4) is: 1

One possible correct answer is: 1
the value of (4.1) is: -1
x
One possible correct answer is: 1
the value of (4.2) is: -1
\times
One possible correct answer is: 1
the value of (4.3) is: -1

One possible correct answer is: -1
the value of (4.4) is:

One possible correct answer is: -1
the value of (1) is: -1
x
One possible correct answer is: 0
the value of (2) is:
\times
One possible correct answer is: 0
the value of (3) is:
x
One possible correct answer is: 0
the value of (4) is:
x
One possible correct answer is: 0.5

4 Quiz \#6
Jump to...

[^1]
[^0]: Started on Thursday, 19 August 2021, 12:20 PM State Finished
 Completed on Thursday, 19 August 2021, 1:35 PM
 Time taken 1 hour 14 mins
 Grade 14.01 out of 25.00 ($\mathbf{5 6 \%}$)

[^1]: Data retention summary

